Adapting a Pre-Neural Named Entity Recognizer and Linker to Historical Data - Inalco - Institut National des Langues et Civilisations Orientales
Communication Dans Un Congrès Année : 2020

Adapting a Pre-Neural Named Entity Recognizer and Linker to Historical Data

Résumé

This article describes the participation of ERTIM (INALCO) to the French NER task of CLEF HIPE 2020 lab with the mXS system, a combination of pattern mining and machine learning, implemented in 2010-2013. Due to multiple reasons, almost no upgrades or improvements were achieved since then, only a minimal linking module and some lexical entries were added. No training and almost no adaptation were implemented for this lab. Results on historical data show severe degradations, in particular concerning the recognition of organisations.
Fichier principal
Vignette du fichier
paper_243.pdf (336.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03613392 , version 1 (18-03-2022)

Identifiants

  • HAL Id : hal-03613392 , version 1

Citer

Damien Nouvel, Jean-Claude Zagabe Seruti. Adapting a Pre-Neural Named Entity Recognizer and Linker to Historical Data. CEUR Workshop Proceedings Conference and Labs of the Evaluation Forum, Sep 2020, Thessalonoki, Greece. ⟨hal-03613392⟩
81 Consultations
54 Téléchargements

Partager

More