Satellite- vs. Verb-Framing Underpredicts Nonverbal Motion Categorization: Insights from a Large Language Sample and Simulations - LLACAN - Langage, Langues et Cultures d’Afrique Noire (UMR 8135)
Article Dans Une Revue Cognitive Semantics Année : 2017

Satellite- vs. Verb-Framing Underpredicts Nonverbal Motion Categorization: Insights from a Large Language Sample and Simulations

Résumé

Is motion cognition influenced by the large-scale typological patterns proposed in Talmy’s (2000) two-way distinction between verb-framed (V) and satellite-framed (S) languages? Previous studies investigating this question have been limited to comparing two or three languages at a time and have come to conflicting results. We present the largest cross-linguistic study on this question to date, drawing on data from nineteen genealogically diverse languages, all investigated in the same behavioral paradigm and using the same stimuli. After controlling for the different dependencies in the data by means of multilevel regression models, we find no evidence that S- vs. V-framing affects nonverbal categorization of motion events. At the same time, statistical simulations suggest that our study and previous work within the same behavioral paradigm suffer from insufficient statistical power. We discuss these findings in the light of the great variability between participants, which suggests flexibility in motion representation. Furthermore, we discuss the importance of accounting for language variability, something which can only be achieved with large cross-linguistic samples.

Domaines

Linguistique
Fichier principal
Vignette du fichier
satellite-verb-framing-underpredicts-nonverbal.pdf (1.45 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

halshs-01667327 , version 1 (22-09-2024)

Identifiants

Citer

Guillermo Montero-Melis, Sonja Eisenbeiss, Bhuvana Narasimhan, Iraide Ibarretxe-Antuñano, Sotaro Kita, et al.. Satellite- vs. Verb-Framing Underpredicts Nonverbal Motion Categorization: Insights from a Large Language Sample and Simulations. Cognitive Semantics, 2017, 3 (1), pp.36-61. ⟨10.1163/23526416-00301002⟩. ⟨halshs-01667327⟩
56 Consultations
7 Téléchargements

Altmetric

Partager

More